Giải bài 35 trang 50 – SGK Toán lớp 8 tập 1
Thực hiện các phép tính
a) x+1x−3−1−xx+3−2x(1−x)9−x2
b) 3x+1(x−1)2−1x+1+x+31−x2
a) x+1x−3−1−xx+3−2x(1−x)9−x2
=x+1x−3−1−xx+3−2x(1−x)−(x2−9)
=x+1x−3−1−xx+3+2x(1−x)x2−9
=(x+1)(x+3)(x−3)(x+3)−(1−x)(x−3)(x+3)(x−3)+2x(1−x)(x−3)(x+3)
=x2+3x+x+3(x−3)(x+3)−x−3−x2+3x(x+3)(x−3)+2x−2x2(x−3)(x+3)
=x2+4x+3(x−3)(x+3)−−x2+4x−3(x+3)(x−3)+2x−2x2(x−3)(x+3)
=x2+4x+3−(−x2+4x−3)+(2x−2x2)(x−3)(x+3)
=x2+4x+3+x2−4x+3+2x−2x2(x−3)(x+3)
=2x+6(x−3)(x+3)
=2(x+3)(x−3)(x+3)
=2x−3
b) 3x+1(x−1)2−1x+1+x+31−x2
=3x+1(x−1)2−1x+1+x+3−(x2−1)
=3x+1(x−1)2−1x+1−x+3x2−1
=(3x+1)(x+1)(x−1)2(x+1)−(x−1)2(x−1)2(x+1)−(x+3)(x−1)(x−1)(x+1)(x−1)
=3x2+3x+x+1(x−1)2(x+1)−x2−2x+1(x−1)2(x+1)−x2−x+3x−3(x−1)2(x+1)
=3x2+4x+1(x−1)2(x+1)−x2−2x+1(x−1)2(x+1)−x2+2x−3(x−1)2(x+1)
=3x2+4x+1−(x2−2x+1)−(x2+2x−3)(x−1)2(x+1)
=3x2+4x+1−x2+2x−1−x2−2x+3(x−1)2(x+1)
=x2+4x+3(x−1)2(x+1)
=x2+x+3x+3(x−1)2(x+1)
=x(x+1)+3(x+1)(x−1)2(x+1)
=(x+1)(x+3)(x−1)2(x+1)
=x+3(x−1)2
Lưu ý: A−B=−AB, ví dụ =1−(x−3)=−1x−3