Giải bài 6 trang 127 – SGK môn Giải tích lớp 12
Tính:
a) π2∫0cos2xsin2xdx;
b) 1∫−1|2x−2−x|dx;
c) 2∫1(x+1)(x+2)(x+3)x2dx;
d) 2∫01x2−2x−3dx;
e) π2∫0(sinx+cosx)2dx;
g) π∫0(x+sinx)2dx.
a)
π2∫0cos2xsin2xdx=12π2∫0cos2x(1−cos2x)dx=12π2∫0cos2xdx−14π2∫0(1+cos4x)dx=(sin2x−x4−sin4x16)|π20=−π8
b)
1∫−1|2x−2−x|dx=0∫−1(2−x−2x)dx+1∫0(2x−2−x)dx=−(2x+2−xln2)|0−1+(2x+2−xln2)|10=1ln2(−1−1+12+2+2+12−1−1)=1ln2
c)
2∫1(x+1)(x+2)(x+3)x2=2∫1x3+6x2+11x+6x2dx=2∫1(x+6+11x+6x2)dx=(x22+6x+11.ln|x|−6x)|21=2+12+11ln2−3−12−6+6=212+11ln2
d)
2∫01x2−2x−3dx=2∫01(x+1)(x−3)dx=142∫0(1x−3−1x+1)dx=14ln|x−3x+1||20=14(ln13−ln3)=−ln32
e)
π2∫0(sinx+cosx)2dx=π2∫0(1+sin2x)dx=(x−cos2x2)|π20=π2+12+12=π2+1
g)
π∫0(x+sinx)2dx=π∫0(x2+2xsinx+sin2x)dx=π∫0x2dx+2π∫0xsinxdx+π∫0sin2xdx=I1+2I2+I3
I1=x33|π0=π33
Đặt {x=usinxdx=dv⇒{du=dxv=−cosx
I2=−xcosx|π0+π∫0cosxdx=π+sinx|π0=π
I3=π∫01−cos2x2dx=(x2−sin2x4)|π0=π2
⇒π∫0(x+sinx)2dx=π33+2π+π2=π33+5π2