Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Giải bài 6 trang 127 – SGK môn Giải tích lớp 12

Tính:

a) π20cos2xsin2xdx

b) 11|2x2x|dx;

c) 21(x+1)(x+2)(x+3)x2dx;

d) 201x22x3dx;

e) π20(sinx+cosx)2dx;

g) π0(x+sinx)2dx.

Lời giải:

a)

π20cos2xsin2xdx=12π20cos2x(1cos2x)dx=12π20cos2xdx14π20(1+cos4x)dx=(sin2xx4sin4x16)|π20=π8

b) 

11|2x2x|dx=01(2x2x)dx+10(2x2x)dx=(2x+2xln2)|01+(2x+2xln2)|10=1ln2(11+12+2+2+1211)=1ln2

c) 

21(x+1)(x+2)(x+3)x2=21x3+6x2+11x+6x2dx=21(x+6+11x+6x2)dx=(x22+6x+11.ln|x|6x)|21=2+12+11ln23126+6=212+11ln2

d)

201x22x3dx=201(x+1)(x3)dx=1420(1x31x+1)dx=14ln|x3x+1||20=14(ln13ln3)=ln32

e)

π20(sinx+cosx)2dx=π20(1+sin2x)dx=(xcos2x2)|π20=π2+12+12=π2+1

g)

π0(x+sinx)2dx=π0(x2+2xsinx+sin2x)dx=π0x2dx+2π0xsinxdx+π0sin2xdx=I1+2I2+I3

I1=x33|π0=π33

Đặt {x=usinxdx=dv{du=dxv=cosx

I2=xcosx|π0+π0cosxdx=π+sinx|π0=π

I3=π01cos2x2dx=(x2sin2x4)|π0=π2

π0(x+sinx)2dx=π33+2π+π2=π33+5π2