Giải bài 16 trang 22 - SGK Giải tích lớp 12 nâng cao
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
f(x)=sin4x+cos4x
Lời giải:
Gợi ý:
Biến đổi hàm số về dạng a+g2(x)
TXĐ: D=R
Ta có:
sin4x+cos4x=(sin2x+cos2x)2−2sin2xcos2x=1−12sin22x
Vì 0≤sin22x≤1 nên 12≤1−12sin22x≤1 với mọi x
Vậy GTLN của f(x) là 1⇔sin22x=0
GTNN của f(x) là 12⇔sin22x=12
Tham khảo lời giải các bài tập Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số khác
Giải bài 16 trang 22 - SGK Giải tích lớp 12 nâng cao Giá trị lớn nhất và...
Giải bài 17 trang 22 - SGK Giải tích lớp 12 nâng cao Tìm giá trị lớn nhất...
Giải bài 18 trang 22 - SGK Giải tích lớp 12 nâng cao Tìm giá trị lớn nhất...
Giải bài 19 trang 22 - SGK Giải tích lớp 12 nâng cao Cho một tam giác đều...
Giải bài 20 trang 22 - SGK Giải tích lớp 12 nâng cao Khi nuôi cá thí...
Giải bài 21 trang 22 - SGK Giải tích lớp 12 nâng cao Tìm cực trị của các...
Giải bài 22 trang 23 - SGK Giải tích lớp 12 nâng cao Tìm m để hàm...
Giải bài 23 trang 23 - SGK Giải tích lớp 12 nâng cao Độ giảm huyết áp...
Giải bài 24 trang 23 - SGK Giải tích lớp 12 nâng cao Cho...
Giải bài 26 trang 23 - SGK Giải tích lớp 12 nâng cao Sau khi phát hiện một...
Giải bài 27 trang 24 - SGK Giải tích lớp 12 nâng cao Tìm giá trị lớn nhất...
Giải bài 28 trang 24 - SGK Giải tích lớp 12 nâng cao Trong các hình chữ nhật...
Mục lục Giải bài tập SGK Toán 12 (Nâng cao) theo chương
Chương 1: Ứng dụng của đạo hàm để khảo sát và vẽ đồ thị hàm số - Giải tích 12 (Nâng cao)
Chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Giải tích 12 (Nâng cao)
Chương 3: Nguyên hàm - Tích phân và ứng dụng - Giải tích 12 (Nâng cao)
Chương 4: Số phức - Giải tích 12 (Nâng cao)
+ Mở rộng xem đầy đủ