Giải bài 1 trang 112 – SGK môn Giải tích lớp 12
Tính các tích phân sau:
a) 12∫−123√(1−x)2dx;
b) π2∫0sin(π4−x)dx;
c) 2∫121x(x+1)dx;
d) 2∫0x(x+1)2dx;
e) 2∫121−3x(x+1)2dx;
g) π2∫−π2sin3xcos5xdx.
a) 12∫−123√(1−x)2dx;
Đặt 1−x=u⇒du=−dx⇒dx=−du
Đổi cận
x | −12 | 12 |
t | 32 | 12 |
12∫−123√(1−x)2dx=−12∫32u23du=32∫12u23du=35u53|3212=35[(32)53−1253]=35.33√9−123√4
b)π2∫0sin(π4−x)dx=cos(π4−x)|π20=cos(−π4)−cos(π4)=0
c)2∫121x(x+1)dx=2∫12(1x−1x+1)dx=ln|xx+1||212=ln23−ln13=ln2
d)2∫0x(x+1)2dx=2∫0(x3+2x2+x)dx=(x44+2x33+x22)|20=4+163+2=343
e) 2∫121−3x(x+1)2dx;
Đặt x+1=u⇒{du=dxx=u−1
Đổi cận
x | 12 | 2 |
u | 32 | 3 |
2∫121−3x(x+1)2dx=3∫321−3(u−1)u2du=3∫32(4u2−3u)du=(−4u−3ln|u|)|332=−43−3ln3+83+3ln32=43−3ln2
g)π2∫−π2sin3xcos5xdx=π2∫−π212(sin8x−sin2x)dx=(cos8x16−cos2x4)|π2−π2=116+14−116+14=12