Giải bài 2 trang 34 – SGK môn Hình học lớp 11
Trong mặt phẳng tọa độ Oxy cho điểm A(−1;2) và đường thẳng d có phương trình 3x+y+1=0. Tìm ảnh của A và d.
a. Qua phép tịnh tiến theo vectơ →v=(2;1);
b. Qua phép đối xứng trục Oy;
c. Qua phép đối xứng qua gốc tọa độ;
d. Qua phép quay tâm O góc 90o.
Lời giải:
Gợi ý:Xem lại các biểu thức tọa độ của mỗi phép biến hình tròn SGK Hình học 11.
Gọi A’ và d’ lần lượt là ảnh của A và d qua các phép biến hình trên.
a) Biểu thức tọa độ của phép tịnh tiến vectơ →v=(2;1) là {x′=x+2y′=y+1
Do vậy, ảnh của A(−1;2) là A′(1;3)
Do vậy, ảnh của A(−1;2) là A′(1;3)
Gọi M(x,y) thuộc d: 3x+y+1=0
M′=T→v(M)=(x′;y′)⇔{x′=x+2y′=y+1⇔{x=x′−2y=y′−1
Thay vào phương trình đường thẳng d, ta có:
3(x′−2)+(y′−1)+1=0⇔3x′+y′−6=0⇒M′∈d′:3x+y−6=0
Vậy phương trình đường thẳng d’ là: 3x+y−6=0
b) Biểu thức tọa độ của phép đối xứng qua trục Oy là {x′=−xy′=y
Do vậy, ảnh của A(−1;2) là A′(1;2)
Gọi M(x,y) thuộc d: 3x+y+1=0
M′=ĐOy(M)=(x′;y′)⇔{x′=−xy′=y⇔{x=−x′y=y′
Thay vào phương trình đường thẳng d, ta có:
3(−x′)+y′+1=0⇔3x′−y′−1=0⇒M′∈d′:3x−y−1=0
Vậy phương trình đường thẳng d’ là: 3x−y−1=0
c) Biểu thức tọa độ của phép đối xứng qua gốc tọa độ O là {x′=−xy′=−y
Do vậy, ảnh của A(−1;2) là A′(1;−2)
Gọi M(x,y) thuộc d, ta có: 3x+y+1=0
M′=ĐO(M)=(x′;y′)⇔{x′=−xy′=−y⇔{x=−x′y=−y′
Thay vào phương trình đường thẳng d, ta có:
3(−x′)+(−y′)+1=0⇔3x′+y′−1=0⇒M′∈d′:3x+y−1=0
Vậy phương trình đường thẳng d’ là: 3x+y−1=0
d)
Qua phép quay tâm O góc 90o, A(−1;2) biến thành A′(−2;−1), B(0;−1) biến thành B′(1;0).
Vì A,B thuộc d nên A′,B′ thuộc d’.
Phương trình đường thẳng d’ là phương trình A′B′.
Ta có: →A′B′=(3;1)⇒→nAB=(1;−3)
Phương trình d’ là: (x−1)−3y=0⇔x−3y−1=0
M′=T→v(M)=(x′;y′)⇔{x′=x+2y′=y+1⇔{x=x′−2y=y′−1
Thay vào phương trình đường thẳng d, ta có:
3(x′−2)+(y′−1)+1=0⇔3x′+y′−6=0⇒M′∈d′:3x+y−6=0
Vậy phương trình đường thẳng d’ là: 3x+y−6=0
b) Biểu thức tọa độ của phép đối xứng qua trục Oy là {x′=−xy′=y
Do vậy, ảnh của A(−1;2) là A′(1;2)
Gọi M(x,y) thuộc d: 3x+y+1=0
M′=ĐOy(M)=(x′;y′)⇔{x′=−xy′=y⇔{x=−x′y=y′
Thay vào phương trình đường thẳng d, ta có:
3(−x′)+y′+1=0⇔3x′−y′−1=0⇒M′∈d′:3x−y−1=0
Vậy phương trình đường thẳng d’ là: 3x−y−1=0
c) Biểu thức tọa độ của phép đối xứng qua gốc tọa độ O là {x′=−xy′=−y
Do vậy, ảnh của A(−1;2) là A′(1;−2)
Gọi M(x,y) thuộc d, ta có: 3x+y+1=0
M′=ĐO(M)=(x′;y′)⇔{x′=−xy′=−y⇔{x=−x′y=−y′
Thay vào phương trình đường thẳng d, ta có:
3(−x′)+(−y′)+1=0⇔3x′+y′−1=0⇒M′∈d′:3x+y−1=0
Vậy phương trình đường thẳng d’ là: 3x+y−1=0
d)
Qua phép quay tâm O góc 90o, A(−1;2) biến thành A′(−2;−1), B(0;−1) biến thành B′(1;0).
Vì A,B thuộc d nên A′,B′ thuộc d’.
Phương trình đường thẳng d’ là phương trình A′B′.
Ta có: →A′B′=(3;1)⇒→nAB=(1;−3)
Phương trình d’ là: (x−1)−3y=0⇔x−3y−1=0
Tham khảo lời giải các bài tập Bài tập ôn tập chương 1 khác
Giải bài 1 trang 34 – SGK môn Hình học lớp 11 Cho lục giác...
Giải bài 2 trang 34 – SGK môn Hình học lớp 11 Trong mặt phẳng tọa...
Giải bài 3 trang 34 – SGK môn Hình học lớp 11 Trong mặt phẳng tọa...
Giải bài 4 trang 34 – SGK môn Hình học lớp 11 Cho vectơ \(\overrightarrow...
Giải bài 5 trang 35 – SGK môn Hình học lớp 11 Cho hình chữ nhật ABCD....
Giải bài 6 trang 35 – SGK môn Hình học lớp 11 Trong mặt phẳng tọa...
Giải bài 7 trang 35 – SGK môn Hình học lớp 11 Cho hai điểm A, B và...
Mục lục Giải bài tập SGK Toán 11 theo chương
Chương 1: Hàm số lượng giác và phương trình lượng giác - Đại số và Giải tích 11
Chương 1: Phép dời hình và phép đồng dạng trong mặt phẳng - Hình học 11
Chương 2: Tổ hợp và xác suất - Đại số và Giải tích 11
Chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song - Hình học 11
Chương 3: Dãy số - Cấp số cộng và cấp số nhân - Đại số và Giải tích 11
Chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian - Hình học 11
Chương 4: Giới hạn - Đại số và Giải tích 11
Chương 5: Đạo hàm - Đại số và Giải tích 11
+ Mở rộng xem đầy đủ