Giải bài 1 trang 40 – SGK Hình học lớp 10
Chứng minh rằng trong tam giác ABC ta có:
a) sinA=sin(B+C);
b) cosA=−cos(B+C).
Lời giải:
Ta có A+B+C=180onên
a) sinA=sin[180o−(B+C)]=sin(B+C);
b) cosA=cos[(180o−(B+C)]=−cos(B+C)
Ghi nhớ:
sinα=sin(180o−α)cosα=−cos(180o−α)
Tham khảo lời giải các bài tập Bài 1: Giá trị lượng giác của một góc bất kì từ 0o đến 180o khác
Giải bài 1 trang 40 – SGK Hình học lớp 10 Chứng minh rằng trong tam...
Giải bài 2 trang 40 – SGK Hình học lớp 10 Cho AOB là tam...
Giải bài 3 trang 40 – SGK Hình học lớp 10 Chứng minh...
Giải bài 4 trang 40 – SGK Hình học lớp 10 Chứng minh rằng với...
Giải bài 5 trang 40 – SGK Hình học lớp 10 Cho...
Giải bài 6 trang 40 – SGK Hình học lớp 10 Cho hình...
Mục lục Giải bài tập SGK Toán 10 theo chương
Chương 1: Mệnh đề - Tập hợp - Đại số 10
Chương 1: Vectơ - Hình học 10
Chương 2: Tích vô hướng của hai vectơ và ứng dụng - Hình học 10
Chương 2: Hàm số bậc nhất và bậc hai - Đại số 10
Chương 3: Phương pháp tọa độ trong mặt phẳng - Hình học 10
Chương 3: Phương trình - Hệ phương trình - Đại số 10
Chương 4: Bất đẳng thức - Bất phương trình - Đại số 10
Chương 5: Thống kê - Đại số 10
Chương 6: Cung và góc lượng giác. Công thức lượng giác - Đại số 10
+ Mở rộng xem đầy đủ