Giải bài 5.82 trang 212 - SBT Đại số và Giải tích lớp 11

Cho hàm số \(f\left( x \right)={{x}^{3}}-2x+1 \)

Hãy tính \(\Delta f\left( 1 \right),df\left( 1 \right)\)  và so sánh chúng, nếu:

\(\begin{aligned} & a)\,\Delta x=1 \\ & b)\,\Delta x=0,1 \\ & c)\,\Delta x=0,01 \\ \end{aligned} \)

 

Lời giải:

Hướng dẫn:

Sử dụng định nghĩa: \(df\left( x \right)=f'\left( x \right)dx=f'\left( x \right)\Delta x\)  và \(\Delta f\left( x \right)=f\left( {{x}_{0}}+\Delta x \right)-f\left( {{x}_{0}} \right) \)

Ta có:

\(\begin{aligned} & \Delta f\left( x \right)=f\left( {{x}_{0}}+\Delta x \right)-f\left( {{x}_{0}} \right) \\ & ={{\left( {{x}_{0}}+\Delta x \right)}^{3}}-2\left( {{x}_{0}}+\Delta x \right)+1-(x_{0}^{3}-2{{x}_{0}}+1) \\ & =x_{0}^{3}+3x_{0}^{2}\Delta x+3{{x}_{0}}{{\left( \Delta x \right)}^{2}}+{{\left( \Delta x \right)}^{3}}-2{{x}_{0}}-2\Delta x+1-x_{0}^{3}+2{{x}_{0}}-1 \\ & =3x_{0}^{2}\Delta x+3{{x}_{0}}{{\left( \Delta x \right)}^{2}}+{{\left( \Delta x \right)}^{3}}-2\Delta x \\ & df\left( x \right)=\left( 3{{x}^{2}}-2 \right)\Delta x \\ \end{aligned} \)

Suy ra: 

\(\begin{aligned} & \Delta f\left( 1 \right)=3\Delta x+3{{\left( \Delta x \right)}^{2}}+{{\left( \Delta x \right)}^{3}}-2\Delta x={{\left( \Delta x \right)}^{3}}+3{{\left( \Delta x \right)}^{2}}+\Delta x \\ & df\left( 1 \right)=\left( {{3.1}^{2}}-2 \right)\Delta x=\Delta x \\ \end{aligned}\)

a) Tại \(\Delta x=1\) ta có \(\left\{ \begin{aligned} & \Delta f\left( 1 \right)=5 \\ & df\left( 1 \right)=1 \\ \end{aligned} \right.\Rightarrow \Delta f\left( 1 \right)>df\left( 1 \right) \)

b) Tại \( \Delta x=0,1\Rightarrow \left\{ \begin{aligned} & \Delta f\left( 1 \right)=0,131 \\ & df\left( 1 \right)=0,1 \\ \end{aligned} \right.\Rightarrow \Delta f\left( 1 \right)>df\left( 1 \right) \)

c) Tại \(\Delta x=0,01\Rightarrow \left\{ \begin{aligned} & \Delta f\left( 1 \right)=0,010301 \\ & df\left( 1 \right)=0,01 \\ \end{aligned} \right.\Rightarrow \Delta f\left( 1 \right)>df\left( 1 \right) \)