Giải bài 5 trang 37 – SGK Toán lớp 9 tập 2

Cho ba hàm số \(y=\dfrac 1 2 x^2;y=x^2;y=2x^2\)

a) Vẽ đồ thị ba hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm ba điểm A, B, C có cùng hoành độ \(x=-1,5\) theo thứ tự nằm trên ba đồ thị . Xác định tung độ tương ứng của chúng.

c) Tìm ba điểm A', B', C' có cùng hoành độ \(x=1,5\) theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A', B và B', C và C'.

d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.

Lời giải:

Hướng dẫn: 

Xem lại cách vẽ đồ thị hàm số \(y=ax^2\) (SGK toán 9 tập 2)

a) Vẽ đồ thị ba hàm số: \(y=\dfrac 1 2 x^2;y=x^2;y=2x^2\)

- Tập xác định \(D=\mathbb R\)

- Lập bảng giá trị:

\(x\)\(-2\)\(-1\)012
\(y=\dfrac 1 2x^2\)2\(\dfrac 1 2\)0\(\dfrac 1 2\)2
\(y=x^2\)41014
\(y=2x^2\)82028
 
Vẽ đồ thị

Gọi \((P_1); (P_2); (P_3)\) lần lượt là đồ thị của ba hàm số \(y=\dfrac 1 2 x^2;y=x^2;y=2x^2\)
 
b) 
 
+) Gọi \(A (-1,5; y_A)\) thuộc (\(P_1)\) ta có: \(y_A=\dfrac 1 2 .(-1,5)^2=1,125\)
 
Vậy \(A(-1,5;1,125)\)
 
+) Gọi \(B (-1,5; y_B)\) thuộc (\(P_2\)) ta có: \(y_B=(-1,5)^2=2,25\)
 
Vậy \(B(-1,5;2,25)\)
 
+) Gọi \(C(-1,5;y_C)\) thuộc (\(P_3\)) ta có: \(y_C=2.(-1,5)^2=4,5\)
 
Vậy \(C(-1,5;4,5)\)
 
c) 
 
+) Gọi \(A' (1,5; y_{A'})\) thuộc (\(P_1)\) ta có: \(y_{A'}=\dfrac 1 2 .(1,5)^2=1,125\)
 
Vậy \(A'(1,5;1,125)\)   
 
+) Gọi \(B' (1,5; y_{B'})\) thuộc (\(P_2\)) ta có: \(y_{B'}=(1,5)^2=2,25\)
 
Vậy \(B(-1,5;2,25)\)
 
+) Gọi \(C'(1,5;y_{C'})\) thuộc (\(P_3\)) ta có: \(y_{C'}=2.(1,5)^2=4,5\)
 
Nhận xét: Các điểm A, B, C lần lượt đối xứng với các điểm A', B', C' qua Oy.
 
d) Từ đồ thị hàm số ta có, giá trị nhỏ nhất của mỗi hàm số là \(y=0\) khi \(x=0\)
Xem video bài giảng và làm thêm bài luyện tập về bài học này ở đây để học tốt hơn.