Giải bài 5 trang 37 – SGK Toán lớp 9 tập 2
Cho ba hàm số \(y=\dfrac 1 2 x^2;y=x^2;y=2x^2\)
a) Vẽ đồ thị ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm A, B, C có cùng hoành độ \(x=-1,5\) theo thứ tự nằm trên ba đồ thị . Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm A', B', C' có cùng hoành độ \(x=1,5\) theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A', B và B', C và C'.
d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
Lời giải:
Hướng dẫn:
Xem lại cách vẽ đồ thị hàm số \(y=ax^2\) (SGK toán 9 tập 2)
a) Vẽ đồ thị ba hàm số: \(y=\dfrac 1 2 x^2;y=x^2;y=2x^2\)
- Tập xác định \(D=\mathbb R\)
- Lập bảng giá trị:
\(x\) | \(-2\) | \(-1\) | 0 | 1 | 2 |
\(y=\dfrac 1 2x^2\) | 2 | \(\dfrac 1 2\) | 0 | \(\dfrac 1 2\) | 2 |
\(y=x^2\) | 4 | 1 | 0 | 1 | 4 |
\(y=2x^2\) | 8 | 2 | 0 | 2 | 8 |
Vẽ đồ thị
Gọi \((P_1); (P_2); (P_3)\) lần lượt là đồ thị của ba hàm số \(y=\dfrac 1 2 x^2;y=x^2;y=2x^2\)
b)
+) Gọi \(A (-1,5; y_A)\) thuộc (\(P_1)\) ta có: \(y_A=\dfrac 1 2 .(-1,5)^2=1,125\)
Vậy \(A(-1,5;1,125)\)
+) Gọi \(B (-1,5; y_B)\) thuộc (\(P_2\)) ta có: \(y_B=(-1,5)^2=2,25\)
Vậy \(B(-1,5;2,25)\)
+) Gọi \(C(-1,5;y_C)\) thuộc (\(P_3\)) ta có: \(y_C=2.(-1,5)^2=4,5\)
Vậy \(C(-1,5;4,5)\)
c)
+) Gọi \(A' (1,5; y_{A'})\) thuộc (\(P_1)\) ta có: \(y_{A'}=\dfrac 1 2 .(1,5)^2=1,125\)
Vậy \(A'(1,5;1,125)\)
+) Gọi \(B' (1,5; y_{B'})\) thuộc (\(P_2\)) ta có: \(y_{B'}=(1,5)^2=2,25\)
Vậy \(B(-1,5;2,25)\)
+) Gọi \(C'(1,5;y_{C'})\) thuộc (\(P_3\)) ta có: \(y_{C'}=2.(1,5)^2=4,5\)
Nhận xét: Các điểm A, B, C lần lượt đối xứng với các điểm A', B', C' qua Oy.
d) Từ đồ thị hàm số ta có, giá trị nhỏ nhất của mỗi hàm số là \(y=0\) khi \(x=0\)
Xem video bài giảng và làm thêm bài luyện tập về bài học này ở đây để học tốt hơn.
Tham khảo lời giải các bài tập Bài 2: Đồ thị hàm số y = ax 2 (a ≠ 0) khác
Giải bài 4 trang 36 – SGK Toán lớp 9 tập 2 Cho hàm số \(y=\dfrac...
Giải bài 5 trang 37 – SGK Toán lớp 9 tập 2 Cho ba hàm...
Giải bài 6 trang 38 – SGK Toán lớp 9 tập 2 Cho hàm số \(y = f(x)...
Giải bài 7 trang 38 – SGK Toán lớp 9 tập 2 Trên mặt phẳng tọa...
Giải bài 8 trang 38 – SGK Toán lớp 9 tập 2 Biết rằng đường cong...
Giải bài 9 trang 39 – SGK Toán lớp 9 tập 2 Cho hai hàm...
Giải bài 10 trang 39 – SGK Toán lớp 9 tập 2 Cho hàm...
Mục lục Chương 4. Hàm số y = ax2 (a ≠ 0). Phương trình bậc hai một ẩn theo chương
Chương 4. Hàm số y = ax2 (a ≠ 0). Phương trình bậc hai một ẩn - Đại số 9
+ Mở rộng xem đầy đủ