Giải bài 17 trang 16 – SGK Toán lớp 9 tập 2

Giải các hệ phương trình sau bằng phương pháp thế

a) {x2y3=1x+y3=2

b) {x22y=5x2+y=110

c) {(21)xy=2x+(2+1)y=1

Lời giải:

a)

{x2y3=1x+y3=2{y3=x21x+x21=2{y3=x21(1+2)x=1+2{y3=x21x=1{x=1y=213

Vậy tập nghiệm của hệ phương trình là S={(1;213)}

b) 

{x22y=5x2+y=110{x=22y+52(22y+5)+y=110{x=22y+54y+10+y=110{x=22y+5y=12105{x=22.12105+5y=12105{x=22355y=12105

Vậy tập nghiệm của hệ phương trình là S={(22355;12105)}

c) 

{(21)xy=2x+(2+1)y=1{y=(21)x2x+(2+1)[(21)x2]=1{y=(21)x2x+x22=1{y=(21)x22x=3+2{x=3+22y=(21).3+222{x=3+22y=12

Vậy S={(3+22;12)}

Nhận xét:

- Ở ý a) ta thấy ở cả hai phương trình của hệ phương trình đều có y3 nên ta thực hiện rút y3 ở phương trình một theo x để thế vào phương trình hai và giải phương trình.

 - Phương pháp thế có thể áp dụng linh hoạt, (ta có thể rút và thế cho 1 biểu thức) không nhất thiết phải là rút y theo x hoặc rút x theo y để thế vào phương trình còn lại

Xem video bài giảng và làm thêm bài luyện tập về bài học này ở đây để học tốt hơn.
Mục lục Chương 3: Hệ phương trình bậc nhất hai ẩn theo chương Chương 3: Hệ phương trình bậc nhất hai ẩn - Đại số 9